AD-A082 105

COLORADO STATE UNIV FORT COLLINS DEPT OF MATHEMATICS

ON THE EXISTENCE OF STRONG UNICITY OF ARBITRARILY SMALL ORDER. (U)

FEB 80 B L CHALMERS, G D TAYLOR

F49620-79-C-0124

UNCLASSIFIED

AFOSR-TR-80-0151

NL

END
DATE
FILMED
4-80
DTIC

	UNCLASSIFIED	LIVEL JL
	SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	5.
	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM.
*	AFOSR-TR-88-8151	3. RECIPIENT'S CATALOG NUMBER
-	4. TITLE (and Subtitle)	STOPE OF REPORT & PERIOD COVERED
(6)	ON THE EXISTENCE OF STRONG UNICITY OF	2) Interim [rest's
		J Interim Francisco
	ARBITRARILY SMALL ORDER	PERFORMING ONG. REPORT NUMBER
	7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(s)
	(le)	(15) 0
	B. L. Chalmers and G. D. Taylor	F49620-79-C-0124
50		VNSF-MCS76-08518
	9. PERFORMING ORGANIZATION NAME AND ADDRESS	AREA & WORK UNIT NUMBERS
	Colorado State University	61102F 623.04 A3
que se	Department of Mathematics ' Fort Collins, CO 80523	
	11. CONTROLLING OFFICE NAME AND ADDRESS	-12. REPORT DATE
CI	AFOSR/NM (//)	February 2080
00	Bldg. 410	15. NUMBER OF PAGES
-	Bollin AFB, D.C. 20332	6 pages
	14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
AD A O	(28)	UNCLASSIFIED
9		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
-	16. DISTRIBUTION STATEMENT (of this Report)	
	Approved for public release, distribution unlimit	ed
	inproved for public refease, distribution until	
		DTIC
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
		PELECIE
		MAR 1 8 1980
	18. SUPPLEMENTARY NOTES	
		В
	19. KEY WORDS (Continue on reverse side if necessary and identity by block number,	
	Uniform approximation theory with constraints, s	trong uniqueness.
	P1(x)>ot= 0 with the constraint	Ita X P-Pout f to the 1/2m power
	f-Poulf + de	Ita X P-Poult to the
10.4		
	20. BSTRACT (Continue on reverse side if necessary and identity by block number)	
1-		eed not hold in its standard
	It is shown that the strong uniqueness theorem n	
0		pproximation problem. In
ac d		pproximation problem. In with polynomials subject to
du		pproximation problem. In with polynomials subject to
000		pproximation problem. In with polynomials subject to khoff interpolating constraint
IF COP		pproximation problem. In with polynomials subject to khoff interpolating constraint any approximating polynomial
FILE COPY		pproximation problem. In with polynomials subject to khoff interpolating constraint any approximating polynomial
FILE COP	form when constraints are imposed on a uniform a particular, it is shown that when approximation a monotone constraint $(p^1(x) \ge 0)$ and Hermite-Bir a best possible result is the inequality $ f-p \ge f-p_f + \delta p-p_f ^{1/2m} \text{ where p is satisfying the constraints and the additional constraints}$	pproximation problem. In with polynomials subject to khoff interpolating constraint any approximating polynomial

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

20. Abstract cont.

norm of P & or = M

 $\|p\| \leq M$ (M fixed) and P_f is the unique best approximation to f from the given class of approximants.

ACCESSION NTIS	White Section
DDC	Buff Section
UNANNOUN	
JUSTIFICAT	ION
87	
	SAME AND THE BANKS MAN
DISTRIBUT	MAINTHOUTH SOURS
DISTRIBUT	FION/AVAILABILITY CODES
Dist. A	AVAIL and/or SPECIAL
Dist.	WAIL and/or SPECIAL

Unclassified

ON THE EXISTENCE OF STRONG UNICITY
OF ARBITRARILY SMALL ORDER OF ARBITRARILY SMALL ORDER

B. L. Chalmers 1

Department of Mathematics University of California Riverside, California

G. D. Taylor²

Department of Mathematics Colorado State University Fort Collins, Colorado

-onke lerno to full (5) sel negating and traces ond in Meson.

14.016

The strong unicity theorem, first given by Newman and Shapiro (4), may be described as follows: Given C[a,b] and W an n-dimensional Haar subspace of C[a,b]. Let $f \in C[a,b]$ and $p_f \in W$ be the best approximation to ffrom W. Then there exists a positive constant γ , depending only on f, such that for all actisions only in Thus, there two manors there tonerton

In (5) one has the following definition; if pr is the best un

 $\|f - p\| \ge \|f - p_f\| + \gamma \|p - p_f\|$ (1.1)

for all $p \in W$ where $||h|| = \max\{|h(t)|: t \in [a,b]\}, h \in C[a,b]$. The extension of this theorem to the setting of monotone approximation has recently been studied by Fletcher and Roulier (3) and Schmidt (5). Specifically, fix an interval [a,b], integers $1 \le r_0 < ... < r_k$, signs $\epsilon_4 = \pm 1$, i = 0, ..., k and define $K=K(r_0,\ldots,r_k;\epsilon_0,\ldots,\epsilon_k)$ by

 $K=\{p\in \Pi_n: \ \epsilon_i p^{(r_j)}(x) \ge 0, \ a \le x \le b, \ j=0,1,...,k \text{ with } k \le n\}$ (1.2)

, where π_n denotes the class of all real algebraic polynomials of degree $\leq n$. The study of approximation of C[a,b] by K is called the monotone

Air Force Systems Command, USAF, under contract F-49620-79-C-0124 and by the National Science Foundation, under grant MCS-78-05847.

Research supported in part by the National Science Foundation, underoved for public rele ²Research supported in part by the Air Force Office of Scientific Research,
Air Force Systems Command, USAF, under contract 5, 40620 70 0 0 10 0 Research,

approximation problem. Professor G.G.Lorentz has played a major role in the development of the theory for this problem. See (2) for a brief expository treatment of this problem and an extensive bibliography.

In (3), Fletcher and Roulier constructed an example in $K=\{p\in \Pi_3: p'(w)\geq 0\}$ on [-1,1]} which shows that the best result of form (1.1) that could hold in this setting would be where $\|p-p_f\|$ is replaced by $\|p-p_f\|^2$. Also, some positive results were given that were extended by Schmidt (5). In (5) it is proved that given $f\in C[a,b]$, K as defined in (1.2), $p_f\in K$ the best monotone approximation to f and a positive constant M, there exists $\gamma>0$ depending only on f and M such that

$$||f - p|| \ge ||f - p_f|| + \gamma ||p - p_f||^2$$
 (1.3)
for all $p \in K$ satisfying $||p|| \le M$.

In (5) one has the following definition: If p_f is the best uniform approximation to $f \in C[a,b]$ from W a subset of C[a,b], we say that p_f is strongly unique of order α (0< α <1) if for each M>0 there is a constant γ >0 such that

$$||f - p|| \ge ||f - p_f|| + \gamma ||p - p_f||^{1/\alpha}$$
 for all $p \in W$ satisfying $||p|| \le M$. Thus, these two papers taken together show that in monotone approximation strong unicity of order 1/2 holds and this is a best possible result.

In this paper we shall show that by taking an appropriate combination of interpolatory constraints with a monotone constraint one obtains an approximation problem in which strong unicity of order $\frac{1}{2m}$, m a positive integer, holds and that this is also a best possible result.

Thus, fix m a positive integer and define
$$K \subset \Pi_n$$
 by
$$K = \{p \in \Pi_n : p^{(1)}(x) \ge 0, a \le x \le b \text{ and } p^{(2)}(x_0) = \dots = p^{(2m-1)}(x_0) = 0 \text{ for } x_0 \in (a,b) \text{ fixed, } n \ge 2m+1\}.$$
 (1.4)

Now, by referring to the general theory of (1), one can prove that corresponding to each $f \in C[a,b]$, there exists a unique best approximation,

pf from K to f. The basic tools of this theory are extreme linear functionals (extremals) of the dual of Π_n corresponding to f and a given $p \in K$. In this particular setting the extremals are as follows. Given f∈C[a,b] and $p \in K$, define for $x \in [a,b]$, e_x^0 on C[a,b] by $e_x^0(g) = g(x)$ for all $g \in C[a,b]$ (point evaluation) and for $x \in [a,b]$, and $1 \le j \le 2m$, e_x^j on π_n by $e_x^j(q) = q^{\binom{j}{j}}(x)$ for all $q \in \pi_n$. The linear functional e_x^0 , $x \in [a,b]$, is said to be an extremal for f and p provided $|e_x^0(f-p)| = ||f-p||$. The linear functional e_x^1 , $x \in [a,b]$ is said to be extremal for f and p provided $e_x^1(p)=0$. Whenever e_x^1 is an extremal for f and p and x∉{a,x0,b} then an additional extremal called an <u>augmented extremal</u> is also present; namely, the extremal e for which $e_x^2(p)=0$ must also hold (since $p^{(1)}(x)\ge 0$). If $e_{x_0}^1$ is an extremal for f and p, then the linear functional $e_{x_0}^{2m}$ is an <u>augmented extremal</u> for f and p with $e_{x_0}^{2m}(p)=0$ holding (since $p^{(1)}(x)\ge 0$). If one starts with an extremal set for f and p (which contains $e_{x_0}^2, ..., e_{x_0}^{2m-1}$) and adds all possible augmented extremals (as described above) to this set, then one has the augmented set of extremals for f and p corresponding to the original extremal set. Observing that these augmented extremal sets always correspond to Hermite-Birkhoff interpolation problems in which every supported block is even, it is relatively straightforward to prove that the maximal augmented extremal set for f and its best approximation, pf, from K must have n+2 elements which span the dual of Π_n . Thus, K is generalized Haar and uniqueness of best approximations holds (1). In addition, suppose p_f is the best approximation to f from K. Then there exists $k \le n+2$ extremals (e.g. (2)), $E=\{e_i\}_{i=1}^k$, none of which are augmented extremals, for which 0 belongs to the convex hull of $\{\sigma(e)e: e\in E\}$ where $\sigma(e)=\operatorname{sgn}(f(x)-p_f(x))$ if $e=e_x^0$ for some $x \in [a,b]$, $\sigma(e)=1$ if $e=e_y^1$ for some $y \in [a,b]$ and $\sigma(e_{x_0}^j)=1$, j=2,...,2m-1. Then, by adjoining to E the set Ea={all augmented extremals corresponding to elements of E) we must have that the set Eaug=EUEa contains at least n+2 elements of Π_n^* which will necessarily span Π_n^* by the fact that every supported block in the corresponding Hermite-Birkhoff problem is even. Likewise, we must have that there exists eeE for which $e=e_X^0$ some xe[a,b] as otherwise E is also an extremal set for f and p_f+c , c any constant, for which Q is in the convex hull of $\{\sigma(e)e: e\in E\}$ violating uniqueness of best approximation. Using these observations we can now prove

THEOREM. Let $f \in C[a,b]$ and $p_f \in K$ be the best approximation to f from K. Given M>O there exists $\gamma = \gamma(f,M) > 0$ such that for $p \in K$ satisfying ||p|| < M,

 $\|f - p\| \ge \|f - p_f\| + \gamma \|p - p_f\|^{2m}$

(1.e. strong unicity of order $\frac{1}{2m}$) and this inequality is best possible. Proof: The proof is an extension of the techniques of Fletcher and Roulier and Schmidt. If $f \in K$ then $\gamma = (2M)^{1-2m}$ suffices. Thus, assume $f \notin K$. Let $E = \{e_i\}_{i=1}^k$ be a set of k extremals, which contains $\{e_{x_0}^j\}_{j=2}^{2m-1}$ but contains no augmented extremals, for which 0 is in the convex hull of $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, for which 0 is in the convex hull of $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, for which 0 is in the convex hull of $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, for which 0 is in the convex hull of $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, for which 0 is in the convex hull of $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, for which 0 is in the convex hull of $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, which convex $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, which $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, which convex hull of $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, which convex hull of $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, which convex hull of $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, which convex hull of $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, which convex hull of $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, which convex hull of $\{e_i\}_{j=2}^{2m-1}$ but contains no augmented extremals, which convex hull of $\{e_i\}_{j=2}^{2m-1}$

 $\|f - p\| \le \|f - p_f\| + \gamma \|p_f - p\|'$.

As this inequality holds for $\|p_f - p\|' = 0$, we have a strong uniqueness-type result for the seminorm $\|\cdot\|'$. Next, the norm, $\|p\| *=\max\{|e(p)|: e \in E^{aug}\}$, is introduced. Thus, there exists a constant $\lambda>0$ such that $\|p\| *\geq \lambda \|p\| \forall p = \mathbb{I}_h$. Finally, we claim that there exists A>0 for which $\|p_f - p\|' \geq A$ ($\|p_f - p\| *$) 2m , $\forall p \in K$ satisfying $\|p\| \leq M$. First observe that $\|p_f - p\|' = 0$ with $p \in K$ implies

 $e(p_f-p)=0$ V a E^{aug} so that $||p_f-p||*=0$. Now, for $e \in E$, there exists a constant K_1 for which $|e(p_f-p)| \ge K_1 |e(p_f-p)|^{2m}$ as $||p|| \le M$. Let $e \in E^{aug} \setminus E$ and assume that $e=e_{x_0}^{2m}$ (the augmented extremal corresponding to $e_{x_0}^{1}$). We claim that there exists $K_2>0$ for which $|e_{x_0}^1(p_f-p)| \ge K_2 |e_{x_0}^{2m}(p_f-p)|^{2m}$ $\forall p \in K$ satisfying $\|p\| \le M$. If this is not the case, then corresponding to each integer v>0 there exists $q_v \in K$ with $||q_v|| \le M$ for which $|q_v'(x_0)| < \frac{1}{v} |q_v^{(2m)}(x_0)|^{2m}$. Now we may assume that q_0 converges uniformly to $q \in K$. Clearly, $q'(x_0)=0$. We can write $q'_{v}(x) = q'_{v}(x_0) + \frac{q_{v}^{(2m)}(x_0)}{(2m-1)!}(x-x_0)^{2m-1} + s_{v}(x)(x-x_0)^{2m} = \beta_{v} + \alpha_{v}(x-x_0)^{2m-1}$ +s_v(x)(x-x₀)^{2m} where $\beta_{v} \rightarrow 0$, $\alpha_{v} \rightarrow 0$ (as q^(2m)(x₀)=0 since q \in K), $|s_{v}(x)| \leq M_{1}$ for all $x \in [a,b]$, some M_1 independent of v and $q_v'(x) \ge 0 \ \forall \ x \in [a,b]$. Thus, that there exists a constant K_1 independent of ν (sufficiently large) such that $|q_{\nu}'(x_0)| \ge K_1 |q_{\nu}^{(2m)}(x_0)|^{2m}$ which is our desired contradiction. Finally, if $e \in E^{aug} \setminus E$ is of the form $e=e_y^2$ some $y \in (a,b) \setminus \{x_0\}$, the above argument (modified) shows that there exists K_3 for which $|e_y^1(p_f-p)| \ge K_2 |e_y^2(p_f-p)|^2$ $\geq K_3 |e_v^2(p_f-p)|^{2m} \forall p \in K$ satisfying $||p|| \leq M$ where K_3 is independent of p. By taking A to be the smallest of the constants produced above, we have that $\|p_{f}-p\|' \ge A(\|p_{f}-p\|'*)^{2m}$ implying $\|f-p\| \ge \|f-p_{f}\| + \gamma \|p_{f}-p\|^{2m}$ $p \in K$ satisfying $\|p\| \le M$ with $\gamma = \gamma(M, f) > 0$ independent of p.

To show this result is best possible we construct an example. Fix m a positive integer and let r_1, r_2, r_3 denote the three roots of $p_0(x) = x^{2m+1} + 2x^{2m} - 1$ (note $-2 < r_1 < -1$, $r_2 = -1$, $0 < r_3 < 1$). Define $K = \{p \in \mathbb{I}_{2m+1} : p'(x) \ge 0$, $x \in [r_1, r_3]$, $0 = p^{(2)}(0) = \dots = p^{(2m-1)}(0)\} = \{p(x) = a_0x^{2m+1} + a_1x^{2m} + a_2x + a_3: p'(x) \ge 0 \text{ on } [r_1, r_3]\}$. Define $g \in \mathbb{C}[r_1, r_3]$ by $g(r_1) = \frac{1}{2}$, $g(-1) = \frac{1}{2}$, $g(r_3) = \frac{1}{2}$ and extend g linearly to all $[r_1, r_3]$. Set $f = g + 2x^{2m+1}$ and $f(x) = 2x^{2m+1}$. Note that $\{-e_2^0, e_1^0, -e_{r_3}^0, e_0^1\}$ is an extremal set for f and $f(x) = 2x^{2m+1}$. Note that $f(x) = 2x^{2m+1}$ are $f(x) = 2x^{2m+1}$. Note that $f(x) = 2x^{2m+1}$ is an extremal set for f and $f(x) = 2x^{2m+1}$. Note that $f(x) = 2x^{2m+1}$ are $f(x) = 2x^{2m+1}$. Note that $f(x) = 2x^{2m+1}$ are $f(x) = 2x^{2m+1}$. Note that $f(x) = 2x^{2m+1}$ are $f(x) = 2x^{2m+1}$. Note that $f(x) = 2x^{2m+1}$ is an extremal set for f and $f(x) = 2x^{2m+1}$. Note that $f(x) = 2x^{2m+1}$ are $f(x) = 2x^{2m+1}$. Note that $f(x) = 2x^{2m+1}$ are $f(x) = 2x^{2m+1}$. Note that $f(x) = 2x^{2m+1}$ are $f(x) = 2x^{2m+1}$. Note that $f(x) = 2x^{2m+1}$ is an extremal set for $f(x) = 2x^{2m+1}$. Note that $f(x) = 2x^{2m+1}$ is an extremal set for $f(x) = 2x^{2m+1}$. Note that $f(x) = 2x^{2m+1}$ is an extremal set for $f(x) = 2x^{2m+1}$.

 $\begin{array}{l} -r_1^{2m+1}-1 \\ \alpha_3 -r_3^{2m+1}+1 \\ \end{array}, \quad \alpha_4 = r_1 + \alpha_2 + \alpha_3 r_3, \quad \text{respectively.}) \quad \text{Thus, } \quad p_f \quad \text{is the desired best} \\ \text{approximation to } \quad f \quad \text{from } \quad K^{(2)}. \quad \text{Next, define } \quad p_\alpha(x) = p_f(x) + \alpha p_0(x) + 4m\alpha^{2m}x, \quad \text{for} \\ 0 < \alpha \leq \alpha_0 \quad \text{where } \quad \alpha_0 \quad \text{is chosen so small that } \quad |f-p_\alpha| = |g-\alpha[p_0 + 4m\alpha^{2m-1}x]| \quad \text{decreases} \\ \text{as } \quad x \quad \text{moves away from } \quad r_i \quad \text{in a neighborhood of } \quad \{r_1, r_2, r_3\} \quad \text{for all } \quad \alpha \quad (0 < \alpha \leq \alpha_0). \\ \text{This can be done since } \quad |g| \quad \text{decreases linearly as } \quad x \quad \text{moves away from } \quad r_i. \\ \text{Hence } \quad \alpha_0 \quad \text{can be chosen so small that } \quad \|f-p_\alpha\| = \max_{i=1,2,3} |(f-p_\alpha)(r_i p), \quad 0 < \alpha \leq \alpha_0 \\ = f(-1) - p_\alpha(-1) = \frac{1}{2} + 4m\alpha^{2m}. \quad \text{Also, } \quad \|f-p_f\| = \frac{1}{2}, \quad \|p_f-p_\alpha\| \geq |p_f(0)-p_\alpha(0)| = \alpha \quad \text{and} \\ \quad p_\alpha'(x) = 2(2m+1)x^{2m} + \alpha((2m+1)x^{2m} + 4mx^{2m-1}) + 4m\alpha^{2m}. \quad \text{Now, for } x > 0, \quad p_\alpha'(x) > 0; \quad \text{for} \\ \quad x \in [r_1, -\alpha], \quad \text{the term } 2(2m+1)x^{2m} \quad \text{dominates showing that } \quad p_\alpha'(x) > 0. \quad \text{Thus} \\ \quad p_\alpha \in K \quad \text{and } \quad (\|f-p_\alpha\| - \|f-p_f\|) / \|p_f-p_\alpha\|^{\beta} \leq \frac{4m\alpha^{2m}}{\alpha^{\beta}}. \quad \text{This implies that we must have} \\ \quad \text{se2m in order for the strong unicity theorem to hold for this } \quad \text{fand } p_f. \quad \blacksquare \end{cases}$

By suitably selecting g, it can be shown that this weaker strong uniqueness result holds for an f which also satisfies all the constraints of K. Additional results on this topic will appear elsewhere.

REFERENCES

- B.L.Chalmers, A unified approach to uniform real approximation by polynomials with linear restrictions, Trans. Amer. Math. Soc., 166(1972), 309-316.
- 2. B.L.Chalmers and G.D.Taylor, Uniform approximation with constraints, Iber.d.Dt.Math.-Verein., 81(1979),49-86.
- Y.Fletcher and J.A.Roulier, A counterexample to strong unicity in monotone approximation, preprint.
- D.J.Newman and H.S.Shapiro, Some theorems on Cebysev approximation, Duke Math.J., 30(1963),673-682.
- D.Schmidt, Strong unicity and Lipschitz conditions of order 1/2 for monotone approximations, preprint.

inegaly to all [r. r.] - Sat. fericax (att) and p. (x)=2x (pt) : Nete-

tero of W. V=(0, X. +4, X +4,